Trammel of Archimedes: From Physical Construction to Proof

Source: Bu, Lingguo. (2017). https://www.thingiverse.com/thing:2695548

Proof One:

In the figure above, $A C$ has a fixed length of $a, B C$ has a fixed length of b. Let $B=(x, y)$ be a point on the curve.

Note that

$$
C D=\sqrt{b^{2}-y^{2}}, \text { and } O C=x-\sqrt{b^{2}-y^{2}} .
$$

Triangle $A C O$ is similar to Triangle $B C D$, which yields

$$
\begin{gathered}
\frac{O C}{C D}=\frac{a}{b}, \text { or, } \frac{x-\sqrt{b^{2}-y^{2}}}{\sqrt{b^{2}-y^{2}}}=\frac{a}{b} \text {, which can be simplified as } \\
\frac{x}{\sqrt{b^{2}-y^{2}}}-1=\frac{a}{b}, \text { and further } \\
\frac{x}{\sqrt{b^{2}-y^{2}}}=\frac{a+b}{b} .
\end{gathered}
$$

Squaring both side of the above, we get

$$
\begin{gathered}
\frac{x^{2}}{b^{2}-y^{2}}=\frac{(a+b)^{2}}{b^{2}}, \\
\frac{x^{2}}{(a+b)^{2}}=1-\frac{y^{2}}{b^{2}}, \text { and finally }
\end{gathered}
$$

$$
\frac{x^{2}}{(a+b)^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

Proof Two:

In the figure above, $A C$ has a fixed length of $a, B C$ has a fixed length of b. Let $B=(x, y)$ be a point on the curve. Label $\theta=\angle E A B$. Then, using a bit of trig, we get

$$
\begin{gathered}
y=b \sin \theta \\
x=(a+b) \cos \theta
\end{gathered}
$$

Then, squaring both equations above, we have

$$
y^{2}=b^{2} \sin ^{2} \theta, x^{2}=(a+b)^{2} \cos ^{2} \theta .
$$

Focusing on the trig functions, we get

$$
\begin{gathered}
\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=\sin ^{2} \theta, \text { and } \frac{x^{2}}{(a+b)^{2}}=\cos ^{2} \theta, \text { which yield } \\
\frac{x^{2}}{(a+b)^{2}}+\frac{y^{2}}{b^{2}}=\sin ^{2} \theta+\cos ^{2} \theta=1 .
\end{gathered}
$$

